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Abstract. In this paper we consider the issue of endowing an AGI system with 
decision-making capabilities for operation in real-world environments or those 
of comparable complexity. While action-selection is a critical function of any 
AGI system operating in the real-world, very few applicable theories or meth-
odologies exist to support such functionality, when all necessary factors are 
taken into account. Decision theory and standard search techniques require sev-
eral debilitating simplifications, including determinism, discrete state spaces, 
exhaustive evaluation of all possible future actions and a coarse grained repre-
sentation of time. Due to the stochastic and continuous nature of real-world en-
vironments and inherent time-constraints, direct application of decision-making 
methodologies from traditional decision theory and search is not a viable op-
tion. We present predictive heuristics as a way to bridge the gap between the 
simplifications of decision theory and search, and the complexity of real-world 
environments. 
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1 Introduction 

While real-world environments are the ultimate target domains of most AGI archi-
tectures, few solutions exist in the literature for rational decision-making under the 
constraints imposed by such environments. Most methods from decision theory rely 
on assumptions that preclude their application in this context; namely deterministic 
environments, discrete state spaces, coarse-grained representations of time and unlim-
ited resources. For example, Russell (1989) presents a resource-bounded decision 
theoretic framework which accounts for the cost of decision-making, but fails to ad-
dress the stochastic nature of the environment.  

For an overview of how many present AGI architectures fail to address operating 
features common to all real-world environments, see Thórisson (2012a), such as un-
certainty and incomplete knowledge. 



In this paper, we propose predictive heuristics as a viable solution to the decision-
making problem in the context of AGI and real-world environments. As opposed to 
exhaustive evaluation of all possible future states, its functionality is based on relax-
ing some of the constraints inherent in traditional search and employing rationally-
directed, selective evaluation of possible and probable future states. 

2 Traditional heuristic search 

In traditional search (as presented in any entry-level AI textbook), action-selection 
in a particular state begins by enumerating and generating all possible next states - or 
nodes, on the next level of the search tree – in what is called the expansion phase. All 
of these possible future states are then evaluated using a utility function and the action 
leading to the state with the highest utility value is chosen as the next action. Some 
applications of search focus on terminal states and do not require a utility function. 
These include game-playing, where terminal states are states that end the current 
game either in a draw, in favor of the system as a player or in favor of the opponent. 
However, a terminal state is not a very intuitive concept to guide decisions of AGI 
systems operating in an open-ended fashion in real-world environments.  

The expansion and evaluation phases are frequently repeated more than one step 
into the future in order to evaluate what lies beyond a particular single action. Time is 
represented in a coarse-grained manner where each decision step and following possi-
ble states are both atomic units of time; conceptually all possible next states are thus 
assumed to occur at a fixed step length in time while their actual time of occurrence is 
unspecified.  

Heuristics may be defined as being “strategies using readily accessible, though 
loosely applicable, information to control problem solving in human beings and ma-
chines” (Pearl, 1983, p. 7) and are usually domain-dependent in some way, for exam-
ple representing “rules-of-thumb” from the particular problem domain. They have 
commonly been used in search problems to increase the efficiency of search algo-
rithms as approximation methods to identify future states that are likely to be more 
rewarding than others. As the concept of heuristics has a loose definition, implemen-
tations vary. Heuristics are part of the utility function for future states in A* search 
(Hart 1968). A more general type of heuristics, hyper-heuristics, has been proposed 
(Burke 2003). Hyper-heuristics are domain-independent in nature, described as meth-
ods for selecting lower-level heuristics at run-time from a predefined set of low-level 
heuristics as appropriate to the present step of the problem solving process (Özcan 
2008). Hyper-heuristics may be understood as a method for optimizing the application 
of manually-generated domain-dependent heuristics at run-time. Realtime operation 
in search and heuristics has been addressed to a degree; most notably by the Real-
Time A* algorithm proposed by Korf (1990). 

 
 
 
 



 

Fig. 1. State-spaces in typical search problems and the application of heuristics. a) The state-
space is represented in atomic temporal steps with a tree structure where each level of the tree 
corresponds to an atomic moment of time. The initial state S0 occurs at time T0. b) All possible 
states in the next moment of time (T1) after S0 are enumerated resulting in the generation of 
possible future states S1,0 to S1,n. c) All states generated in the previous step are evaluated using 
a heuristic utility function. The resulting utility value for each state is noted in the figure. d) 
Comparison of utility values finds the state with maximum utility value. This results in either 
the selection of an action producing that state or an expansion of that state where following 
states are evaluated. In the latter case, heuristics control how the search tree is expanded. 

3 Challenges of real-world environments 

Determinism, discrete state-spaces and coarse-grained temporal representations all 
present significant problems for AGIs intended to operate in the real-world in envi-
ronments of real-world complexity. In such environments, determinism is a problem 
since what has reliably worked in the past is not guaranteed to work in the future; the 
environment may change or some external entity may unexpectedly influence how 
events unfold. Discrete state-spaces are a problem as the state of real-world environ-



ments must be represented largely by continuous values, eliminating the possibility of 
enumerating all possible future states, let alone the resource requirements for evaluat-
ing all of them. While fine-grained discretization can approximate continuous values, 
each approximated value may still take anywhere from 232 to 264 different values. In 
operating situations involving multiple approximated values, the state-space quickly 
grows out of control from the resulting combinatorial explosion if all possible future 
states must be considered. A more coarsely grained approximation can reduce the 
state-space, but is also likely to negatively impact performance at some point. Coarse-
grained representations of time are a problem as changes in real-world environments 
do not occur simultaneously at relatively wide, fixed, synchronized intervals. For 
these reasons, exhaustive evaluation of all possible future actions – and thus optimali-
ty in decision-making that guarantees the best outcome – is impossible in real-world 
environments in resource-bounded AGI systems. 

Changing the assumption of environmental determinism into a probabilistic envi-
ronment leaves the nature of the issue unchanged. For example, in a Markov decision 
process (MDP) the next state after an action is random, with a probabilistic distribu-
tion. While closer to the real-world environment by capturing the uncertainty about 
the consequences of actions, a stationary probabilistic distribution for the states fol-
lowing an action are nevertheless unavoidable, and consequently truly novel situa-
tions and unanticipated situations are precluded. Furthermore, probabilistic models 
usually have even higher resource demands than deterministic models, given the large 
number of possible consequences of each action.  

This implies that if we want to properly address this issue, the only feasible ap-
proach left is the selective evaluation of all possible future states. However, accepting 
this challenge gives us another problem; that of mapping out selected future points of 
interest: We must invent a process of selective generation of possible future states of 
value to the AGI system. 

4 Adapting search to real-world environments 

The traditional setting for search can be altered to accommodate decision-making in 
real-world environments. First, a fine-grained representation of time must be accom-
modated in the decision-making process. The distinction between fine- and coarse-
grained representations should be viewed relative to the frequency of changes in the 
operating environment where finer grained representations encode the actual sequence 
of events with greater accuracy. This distinction may also be viewed as the difference 
between an order-based versus a measure-based representation, the latter being de-
sired here. While this only applies to events relevant to the operation of the system, 
these events are unknown at design time due to the domain-independent nature of 
AGI systems; consequently, the finest possible or practical granularity should be tar-
geted. This is possible if the requirement of considering only simultaneous possible 
actions (at the next coarse-grained time step) is simply dropped. The focus of the 
decision-making process is still one step of action into the future. However the size of 
such a step is allowed to vary in length along the future part of the temporal dimen-



sion for each possible action. This length is determined by the timing of selected 
states that end up being evaluated. The result is that meaning is given to the length of 
the links in Figure 1, representing when in time the possible future states occur. As 
already discussed the enumeration of all possible future states – even at a fixed point 
in time – is intractable in real-world environments. For this reason, the requirement of 
generating all possible future states must be dropped in favor of selectively generating 
only a small subset of these. This addresses the enumeration problem. Finally, the 
stochastic nature of the environment must be acknowledged by estimating the likeli-
hood of generated future states as opposed to taking their occurrence for granted, 
given some action leading up to them. The evaluation of likelihood does not have to 
assume a stationary probability distribution. Even so, the likelihood of a future state 
should influence its evaluation; it seems reasonable to discount the value of a highly 
favorable future state (in terms of the utility function of the AGI system) if its actual 
occurrence is not likely. Conversely, it is rational to amplify the value of a possible 
future state of average value (relative to other possible future states) if its actual oc-
currence is virtually guaranteed. This addresses the issue of deterministic environ-
ments. 
Conceptually, the search tree structure is still valid for representing the decision prob-
lem, but evenly distributed levels of the tree disappear as the length of links between 
nodes now represents the duration of time elapsing between states. This implies that 
the depth of a node becomes its distance in the temporal dimension from the root 
node, as opposed to the number of intermediate actions. 

5 Predictive heuristics 

While AGI systems require some type of heuristics-like functionality in order to 
detect future states of potential interest, these cannot be directly unleashed on an ex-
isting set of possible future states as that information is not available. One possible 
solution is to generate “imaginary” future situations that are likely to occur in the 
future, where each situation is not fully specified (as a “state” in the traditional sense). 
The application of search to such partial states, which only deal with changes in the 
operating environment that have goal-relevance and leave other changes unaddressed, 
coupled with the modified search methodology presented in the previous section, 
which allows simultaneous evaluation of actions at arbitrary distances into the future, 
and the formulas presented below, that incorporate uncertainty, incomplete 
knowledge and temporal context represent the core of the idea presented in this paper. 

Such predictions could be made based on the present operating situation, the opera-
tional experience of the system and some suggested actions on part of the system 
(which should include inaction). By continuously generating future predictions that 
collectively represent a set of events that have more probability of occurring than 
others, the AGI system can attempt to stay some steps ahead of the environment and 
thus increase its chances of being prepared, by pre-computing – mentally preparing – 
some aspects of the potential actions that might achieve its active goals at those future 
steps. It seems rational to direct the resources of the system towards events that have a 



greater probability of occurring rather than towards the much greater (infinite?) num-
ber of improbable ones. An implication of this approach is that the system will be 
unable to anticipate, prepare for or actively avoid events that cannot be rationally 
predicted in some way by its operational experience. But no known intelligence has 
this ability either. 

Having adapted the search problem to real-world environments, some challenges 
remain. One of the key ones is the issue of how possible future states are selectively 
generated and the estimation of their likelihood. Clearly, possible future states consti-
tute states that are likely to occur in case of a) inaction and b) selected actions on part 
of the AGI system. Predictions made on the basis of possible future actions of the 
AGI system can be viewed as a form of goal-directed simulation, not to be confused 
with simulation-based search methods such as Monte-Carlo Tree Search (Chaslot 
2008). A complete enumeration of all possible actions on part of the system is intrac-
table for the same reason as exhaustive enumeration of all possible future states is; 
most actions can be assumed to include parameters with continuous values making 
the set of all possible actions potentially infinite. For this reason, the system must 
suggest a set of goal-relevant actions. While the functionality required for this is out-
side the scope of this paper, our experience indicates that attentional functionality is 
of key importance for this purpose (Helgason et al. 2012). In general, any slight or 
major improvement in predicting relevancy will increase the value of the work pro-
posed here.  

If we denote the set of suggested actions as Ψ and a set containing inaction is de-
noted as Ι, the complete set of actions for consideration is the union of Ψ and Ι, de-
noted as Ω. Given the set Ω, the selective generation of possible future states of inter-
est can be approached as a prediction problem where the hypothetical states resulting 
from each action contained in Ω are predicted. The set containing these possible fu-
ture states is denoted Θ. In this case, the decision-making problem boils down to 
computing an expected value (where the likelihood of the occurrence of the state is 
given consideration) for each possible future state in Θ and finding the state with 
maximum value. A set of predictors, denoted Ρ, is used to generate Θ where each 
predictor (pi) is a process that takes a subset of the present state of the environment 
and the system itself in addition to a single action from Ω as inputs and outputs a 
prediction of a new state occurring at an explicit point in time (in the future). Each 
predictor uses (or is built from) the operational history of the AGI system, which is a 
necessary basis of all predictions. Furthermore, the performpance of each predictor is 
measured over time with two parameters: success rate and confidence. These parame-
ters and the way in which they are calculated are based on Wang’s (2006: 59-62) 
method for evaluating truth of logical statements in NARS, which is motivated in the 
cited text. 

No further selection is necessary after the set Θ has been selectively populated; the 
very fact that a state was generated (predicted) indicates that it is worthy of the re-
sources necessary for evaluation. Not only does this allow the AGI system to choose 
rational actions likely to advance its goals, it may also allow the system to detect that 
undesirable events are likely to occur in the near future, which the system can then 
generate explicit goals to avoid. 



 

Fig. 2. Predictive heuristics. a) The initial state of Si occurs at a specific point on a continuous 
(or fine-grained) axis of time. b) Based on the state Si and the set of suggested actions (Ω), a 

finite set of possible future states (each denoted S’) is generated that may be distributed on the 
future part of the temporal axis. c) Each S’ state is evaluated and S’5 found most desirable (hav-

ing the highest expected value), causing the selection of the action leading to that state or the 
examination of states following S’5 where the steps depicted here are repeated with S’5 as the 

initial state. 

 

The success rate is the ratio of successful predictions that the predictor has made in 
the past. The confidence represents the reliability of the success rate value based on 
the amount of evidence supporting it. Using these two values, a likelihood value can 
be computed that indicates the likelihood of a particular future state occurring. This 
value should be interpreted as relative to the likelihood of other future states under 
consideration as opposed to a strict probabilistic interpretation. The likelihood of a 
prediction S’ made by predictor pi is computed using Wang’s (2006: 75-76) formula 
for expectation as: 



 

 
Unlike in probability theory, this likelihood measurement is not based on a station-

ary distribution function, since we do not assume the prediction results are random 
numbers governed by a fixed distribution. The formula above incorporates two criti-
cal issues for decision theory: Uncertainty and incomplete knowledge. It addresses 
non-determinism in the operating environment without using probability distributions 
for action outcomes, which has inherent limitations. 

As the system is expected to be goal-driven, the evaluation function for future 
states should be based on goal-achievement. Each goal of the system is assumed to 
have an associated priority and deadline values; however in the absence of these, 
default initial values may be used. Time is represented as a single numeric value. The 
Achieved function evaluates to 1.0 if goal gi is achieved in the specified state and -1.0 
otherwise. Each state occurs at a specific time t, which is encoded in the state itself. 
The Utility function evaluates the value of achieving a goal given the priority of the 
goal and temporal context of a specified state. For the sake of clear notation, two 
helper functions are used and a special set, H, is introduced which contains all time 
horizons (quantified intervals of time) between the time of all states currently under 
consideration and the deadline of the goal spawning the state. The Urgency function 
returns 0 if either value is equal or less than 0. 

 

 
 
With key functions in place, we can compute the expected value of a future state S’ 

using the formula below where m is the total number of states that must be consid-
ered, as the occurrence of S’ may be dependent on (m-1) intermediate states occur-
ring, forming a sequential chain of predictions each having their own likelihood val-
ue. If S’ is not dependent on intermediate states, then m is 1. 

 

 
In systems based on fine-grained architectures the decomposition of a top-level in-

to several sub-goals may be expected. Increasing the number of active goals involved 
with regular operation of the system results in finer granularity of the evaluation pro-



cess. For this reason, this evaluation method may be particularly useful for AGI archi-
tectures designed under a constructivist methodology (Thórisson 2012).  

Resource availability can be expected to affect the number of predictions made by 
the AGI system at each point in time. Predictive functionality has strong links to 
learning, as learning can result from discovering solutions by way of generating pre-
dictions with desirable outcomes in terms of active goals. This indicates that during 
periods where the system lacks knowledge and actively seeks to learn, a greater share 
of resources should be devoted to the generation and evaluation of predictions than 
under normal circumstances; this causes the system to explore a greater number of 
future states. This represents a resource-bounded, interruptible and directed fashion of 
discovery and learning as part of the decision-making process.  

To encapsulate these ideas, we propose the concept of predictive heuristics for the 
functionality just described; this concept represents an extended scope and altered 
functionality in contrast to traditional heuristics. To explicitly motivate this naming: 
Predictive refers to reliance on predictors to guide action selection and generation of 
resulting states as this has traditionally not been viewed as part of heuristic functional-
ity since a separate expansion phase has been the norm. Compared to traditional 
methods, in our approach the heuristics for selective state generation are integrated at 
deeper levels of the search mechanism. 

 

6 Discussion 

Predictive heuristics represent one possible way to relate work in state-space 
search and decision theory to the AGI problem. At a minimum, the proposed ideas 
highlight problems faced by traditional search methods in real-world environments 
and provide a potential bridge from which techniques from traditional search and 
decision theory could possibly be brought to bear on AGI-level problems, although 
most probably in some slightly altered form. 

With prediction-based generation of future states, the evaluation of possible future 
events is restricted to states that have a non-astronomical probability of occurring. 
Rather than working backwards from all possible future states - the number of which 
approaches infinity in real-world environments – it seems greatly more feasible to 
work forward from the current state to the states that are likely to follow while using 
the goals to guide the process (so a form of backward inference is absorbed into it); 
the resulting decrease in complexity of the decision problem can hardly be overstated 
as the number of states to be considered can drop by several orders of magnitude (or 
even from infinity to finite number). Furthermore, it is no longer a fixed number, but 
is adapted to the system’s available resources. When the system is idle, it can afford 
the time to consider some unusual possibilities; when it is busy, it will focus on the 
most promising paths. 

A variation of the functionality presented in the present paper has been successful-
ly implemented in the AERA architecture (Nivel et al. 2012a & 2012b, Thórisson 
2012b) with further publications to follow. 
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